Triplex-forming PNA modified with unnatural nucleobases: the role of protonation entropy in RNA binding.

نویسندگان

  • Tamaki Endoh
  • Chiara Annoni
  • Dziyana Hnedzko
  • Eriks Rozners
  • Naoki Sugimoto
چکیده

Peptide nucleic acid (PNA) modified with unnatural nucleobases enables the formation of a highly stable triplex with a double-stranded RNA at physiological pH. In this communication, we evaluated kinetics and thermodynamics of PNA/RNA triplex formation as a function of both pH and temperature. Protonation entropy was found to be the major factor responsible for the destabilization of the triplex and for the progressive decrease in the association rate at more basic pHs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes

Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseud...

متن کامل

Triplex-forming peptide nucleic acid modified with 2-aminopyridine as a new tool for detection of A-to-I editing.

RNA editing from adenosine to inosine (A-to-I editing) is one of the mechanisms that regulate and diversify the transcriptome. Here, a triplex-forming peptide nucleic acid (PNA) modified with a 2-aminopyridine nucleobase was applied for the recognition of the A-to-I editing event in double-stranded RNAs. The triplex-forming PNA enabled sequence-specific detection of single nucleobase editing at...

متن کامل

High-affinity triplex targeting of double stranded DNA using chemically modified peptide nucleic acid oligomers

While sequence-selective dsDNA targeting by triplex forming oligonucleotides has been studied extensively, only very little is known about the properties of PNA-dsDNA triplexes--mainly due to the competing invasion process. Here we show that when appropriately modified using pseudoisocytosine substitution, in combination with (oligo)lysine or 9-aminoacridine conjugation, homopyrimidine PNA olig...

متن کامل

Antisense properties of duplex- and triplex-forming PNAs.

The potential of peptide nucleic acids (PNAs) as specific inhibitors of translation has been studied. PNAs with a mixed purine/pyrimidine sequence form duplexes, while homopyrimidine PNAs form (PNA)2/RNA triplexes with complementary sequences on RNA. We show here that neither of these PNA/RNA structures are substrates for RNase H. Translation experiments in cell-free extracts showed that a 15me...

متن کامل

Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids

RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral pep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 18 47  شماره 

صفحات  -

تاریخ انتشار 2016